




ALUMINUM PERFORATED SHEET: 1.2MM THK, OF PANEL BEFORE INSTALLATION FOR APPROVAL

POLYCARBONATE SHEET: 1/4"MM THK, 4'x8', COLOR: *LIGHT BLUE*, INSTALLED ON METAL FRAME, SCREWED & WELDED, ALSO CONTRACTOR SHALL SUBMIT SAMPLE FOR
APPROVAL UPON INSTALLATION AND DETAILED CONNECTION DETAILS

BRISE SOLEIL/SUN BREAKERS: 2"x2" PRE-PAINTED TUBULAR PIPE SPACED AT 500MM, ALTERNATE IN BLACK AND WHITE COLOR UPON INSTALLATION



POLYCARBONATE SHEET: COLOR: LIGHT BLUE
CONTRACTOR SHALL SUBMIT
SAMPLE FOR APPROVAL UPON
INSTALLATION AND DETAILED CONNECTION DETAILS ALUMINUM PERFORATED SHEET: 1.2MM THK, 4'x8', CONTRACTOR SHOULD SUBMIT DESIGN OF PANEL BEFORE INSTALLATION FOR



1:300 MTS

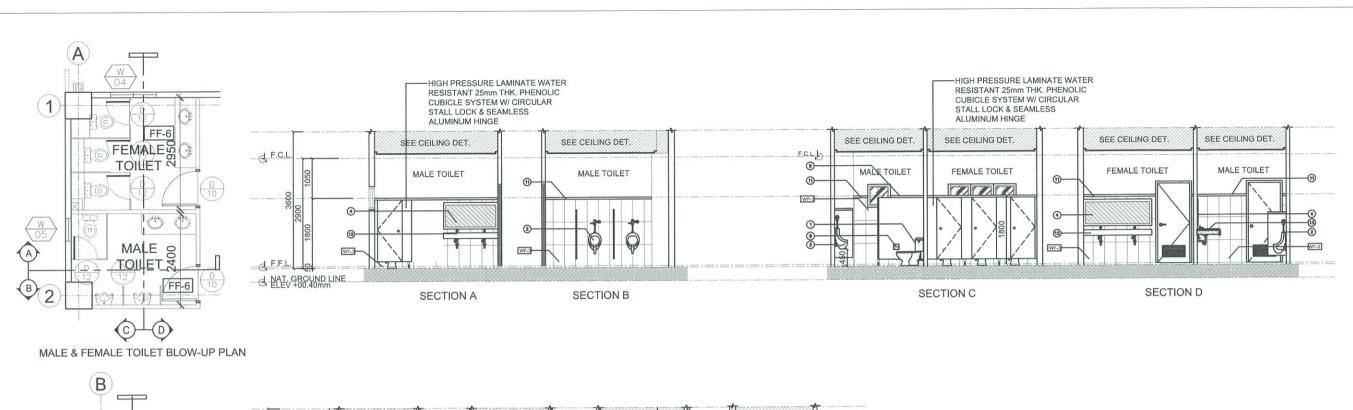


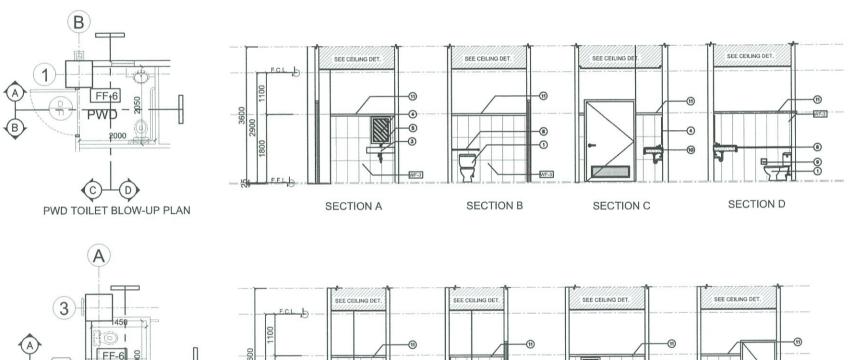
TESDA INNOVATION CENTER - SFIST FIRE EXIT STAIR SECTION & DETAILS

1:100 MTS

FOR APPROVAL PLANS OF **REGIONAL TVET INNOVATION CENTERS (RTICs) 2023** 




PROPOSED TESDA SFIST INNOVATION CENTER


ARCHITECT



SHEET NO. SHEET CONTENTS: COMPOSITE STAIR PLAN & DETAILS FIRE EXIT STAIR DETAILS A-19

SEC. SUHARTO T. MANGUDADATU, Ph.D.
PMU-SIPTVETS
SECRETARY, TESDA





1 TANK TYPE WATER CLOSET
2 URINAL
3 LAVATORY
4 MIRROR
5 FAUCET
6 HPL PHENOLIC (COLOR:BROWN)
7 TISSUE HOLDER
8 GRAB BAR

**TOILET LEGENDS:** 

TOILET LEGENDS:

9 CONTINUOUS HEADER FRAME,
HPL PHENOLIC (COLOR: BROWN)

10 SYNTHETIC GRANITE
COUNTER TOP

11 TILE STRIP EDGING
FF-6 — 300MM X 300MM UNGLAZED
TILES (COLOR AND DESIGN
AS PER APPROVED)

WF-3 — 300MM X 600MM GLAZED
WALL TILES (HEIGHT 1.80 M)



FOR APPROVAL PLANS OF REGIONAL TVET INNOVATION CENTERS (RTICs) 2023

POWDER ROOM BLOW-UP PLAN



SECTION A

PROPOSED TESDA SFIST INNOVATION CENTER

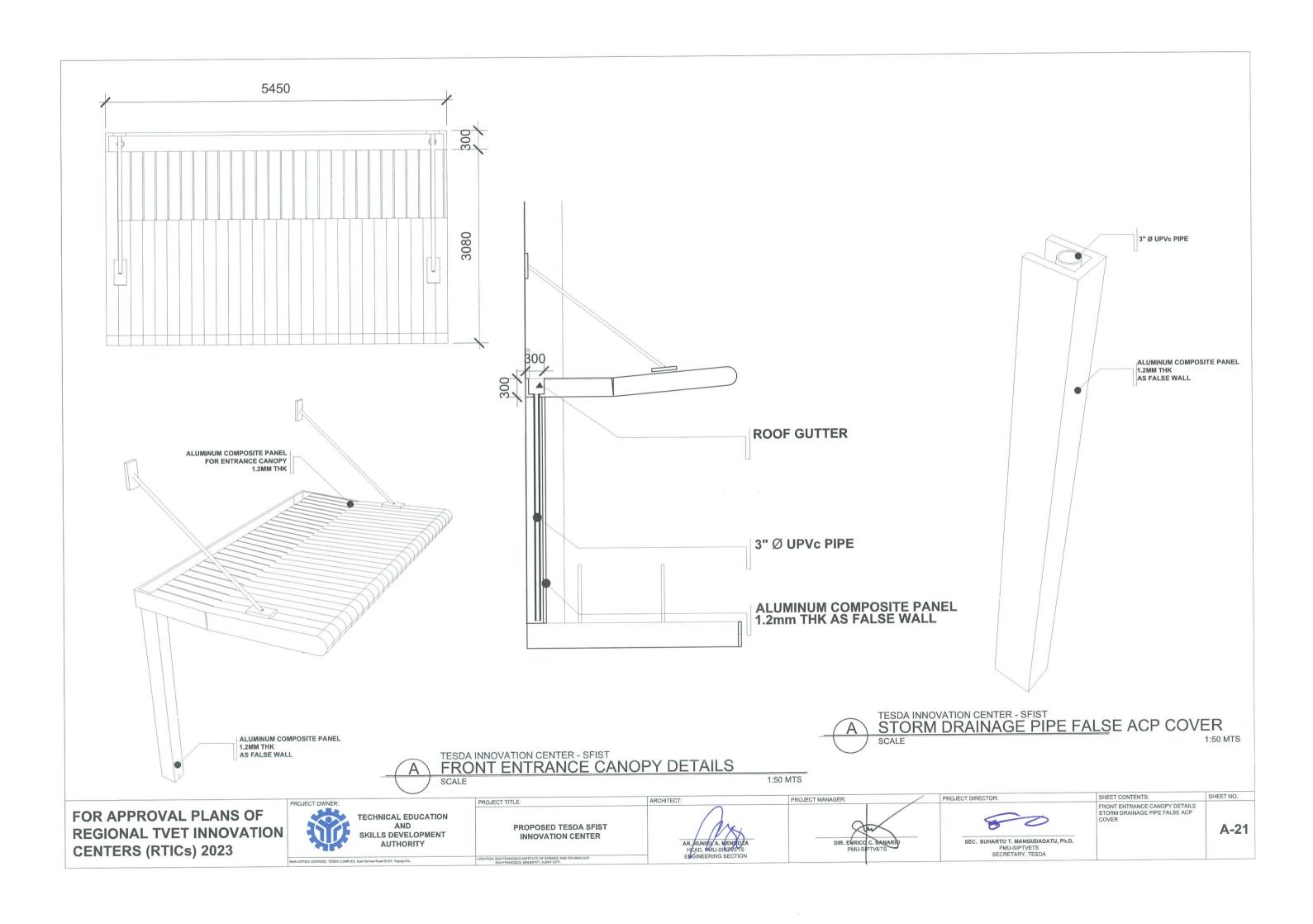
SECTION C

SECTION B

PROJECT TITLE:



SECTION D






SHEET CONTENTS: SHEET NO.

ALL COMFORT ROOMS PLANS &
DETAILS

A-20



#### A. GENERAL NOTES:

- 1. THE STRUCTURAL DRAWING SHALL BE USED IN CONJUNCTION WITH THE DRAWINGS WITH ALL OTHER DISCIPLINES AND THE SPECIFICATIONS. THE CONTRACTOR SHALL VERIFY THE REQUIREMENTS OF OTHER TRADES AS TO SLEEVES, CHASES, HANGERS, ANCHORS, HOLES AND OTHER ITEMS TO BE PLACED OR SET IN THE STRUCTURAL WORKS.
- 2 THE CONTRACTOR SHALL BE RESPONSIBLE FOR COMPLYING WITH ALL SAFETY PREGAUTIONS AND REGULATIONS DURING THE WORK. THE ENGINEER WILL NOT ADVISE ON NOR ISSUE DIRECTIONS AS TO PLAN AND PROGRAMS.
- 3 THE STRUCTURAL DRAWINGS HEREIN REPRESENT THE FINISHED STRUCTURE. THE CONTRACTOR SHALL PROVIDE ALL TEMPORARY BRACINGS REQUIRED TO ERECT AND HOLD THE STRUCTURE IN PROPER ALIGNMENT UNTIL ALL STRUCTURAL WORKS AND CONNECTIONS HAVE BEEN COMPLETED. THE INVESTIGATION DESIGN, SAFETY, ADEQUACY AND INSPECTION OF ERECTION BRACING. SHORING, TEMPORARY SUPPORTS ETC. IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR.
- 4. THE ENGINEER SHALL NOT BE RESPONSIBLE FOR THE METHODS, TECHNIQUES, AND SEQUENCES OF THE CONTRACTOR
- 5. DRAWINGS INDICATE GENERAL AND TYPICAL DETAILS OF CONSTRUCTION. WHERE CONDITIONS ARE NOT SPECIFICALLY SHOWN, SIMILAR DETAILS OF CONSTRUCTION SHALL BE USED, SUBJECT TO THE APPROVAL OF THE ENGINEER.
- 6. ALL STRUCTURAL SYSTEMS WHICH ARE TO BE COMPOSED OF COMPONENTS TO BE FIELD ERECTED SHALL BE SUPERVISED BY THE SUPPLIER DURING MANUFACTURING, DELIVERY HANDLING, STORAGE AND ERECTION IN ACCORDANCE WITH THE SUPPLIER'S INSTRUCTIONS AND
- 7 LOADING APPLIED TO THE STRUCTURE DURING THE PROCESS OF CONSTRUCTION SHALL NOT EXCEED THE SAFE LOAD-CARRYING CAPACITY OF THE STRUCTURAL MEMBERS. THE LIVE LOADINGS USED IN THE DESIGN OF THIS STRUCTURE ARE INDICATED IN THE "DESIGN CRITERIA" NOTES", DO NOT APPLY ANY CONSTRUCTION LOADS UNTIL STRUCTURAL FRAMING IS PROPERLY CONNECTED TOGETHER AND UNTIL ALL TEMPORARY BRACINGS ARE IN PLACE.
- 8. SHOP DRAWINGS AND OTHER ITEMS SHALL BE SUBMITTED TO THE ENGINEER FOR REVIEW PRIOR TO FARRICATION, ALL SHOP DRAWINGS SHALL BE REVIEWED BY THE GENERAL CONTRACTOR BEFORE SUBMITTAL. THE ENGINEER'S REVIEW IS TO BE CONFORMANCE WITH THE DESIGN CONCEPT AND GENERAL COMPLIANCE WITH THE DESIGN CONCEPT AND GENERAL COMPLIANCE WITH THE RELEVANT CONTRACT DOCUMENTS. THE ENGINEER'S REVIEW DOES NOT RELIEVE THE CONTRACTOR OF THE SOLE RESPONSIBILITY TO REVIEW, CHECK AND COORDINATE THE SHOP DRAWING PRIOR TO SUBMISSION. THE CONTRACTOR REMAINS SOLELY RESPONSIBLE FOR ERRORS AND OMISSIONS ASSOCIATED WITH THE PREPARATION OF THE SHOP DRAWINGS AS THEY PERTAIN TO MEMBER SIZES, DETAILS, DIMENSIONS, ETC.,
- 9. SUBMIT SHOP DRAWINGS IN THE FORM OF TWO BLUELINE PRINTS, IN NO CASE SHALL REPRODUCTION OF THE CONTRACT DRAWINGS BE USED AS SHOP DRAWINGS, AS A MINIMUM SUBMIT THE FOLLOWING ITEMS FOR REVIEW:
  - REINFORCING STEEL SHOP DRAWINGS. STRUCTURAL STEEL SHOP DRAWINGS.

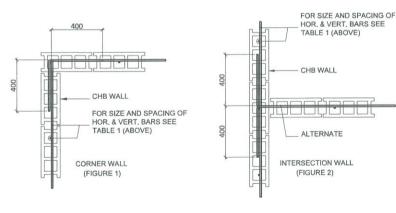
  - OTHER SUBMITTALS MAY BE REQUIRED IN ACCORDANCE WITH THE "SCHEDULE OF SPECIAL INSPECTIONS"OR THE SEPARATE NOTES CONTAINED HEREIN.
- 10. IN THE INTERPRETATION OF THESE DRAWINGS, INDICATED DIMENSIONS SHALL GOVERN AND OR SIZES SHALL NOT BE SCALED FOR CONSTRUCTION PURPOSES
- 11. ALL REINFORCED CONCRETE WORK SHALL BE DONE IN ACCORDANCE WITH THE ACI-318-08 BUILDING CODE, AND ALL STRUCTURAL STEEL WORK SHALL BE DONE IN ACCORDANCE WITH AISC SPECIFICATIONS (LATEST EDITION) IN SO FAR AS THEY DO NOT CONFLICT WITH THE LOCAL
- 12. ALL SLABS, BEAMS, GIRDERS AND OTHER STRUCTURAL ELEMENTS WHICH ARE NOT INDICATED. DETAILED, DESIGNATED OR INADVERTENTLY OMITTED BUT ARE NECESSARY TO BE COORDINATED WITH ARCHITECTURAL AND OTHER ALLIED ENGINEERING PLANS AS WELL AS TO COMPLETE THE STRUCTURAL WORKS IN ACCORDANCE WITH THE INTENT OF THE PLANS AND SPECIFICATIONS SHALL BE BROUGHT UP DURING PRE-BID/MEETINGS/NEGOTIATIONS IT IS LINDERSTOOD THAT THE CONTRACTOR HAS PROVIDED AND INCLUDED ALL THESE ITEMS IN THEIR BID.

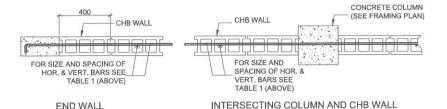
### B. NOTES ON CONCRETE MIXES AND PLACING

- 1. CONCRETE SHALL BE DEPOSITED IN ITS FINAL POSITION WITHOUT SEGREGATION, RE-HANDLING OR FLOWING PLACING SHALL BE DONE PREFERRABLY WITH BUGGIES, BUCKETS OR WHEEL BARROWS NO CHUTES WILL BE ALLOWED EXCEPT TO TRANSFER CONCRETE FROM HOPPERS TO BUGGIES WHEEL BORROWS OR BUCKETS, IN WHICH CASE, THEY SHALL NOT EXCEED SIX THOUSAND (6000mm) IN AGGREGATE LENGTH.
- 2. NO DEPOSITING OF CONCRETE SHALL BE ALLOWED WITHOUT THE USE OF VIBRATORS UNLESS AUTHORIZED IN WRITING BY THE STRUCTURAL ENGINEER AND ONLY FOR UNUSUAL CONDITIONS WHERE VIBRATION IS EXTREMELY DIFFICULT TO ACCOMPLISH.

#### C. NOTES ON STRUCTURAL STEEL

- ALL STRUCTURAL STEEL SHALL CONFORM TO THE 2005 13TH EDITION OF "MANUAL OF STEEL CONSTRUCTION" & "AISC 360-10 SPECIFICATION OF STRUCTURAL STEEL BUILDINGS"OF THE AISC.
- 2 ALL WELDING SHALL BE IN ACCORDANCE WITH AWS D1.1 USING E70XX ELECTRODES. UNLESS OTHERWISE NOTED, PROVIDE CONT. MIN. SIZED FILLET WELDS PER AISC REQUIREMENTS. ALL FILLER MATERIAL SHALL HAVE A MINIMUM YIELD STRENGTH OF 70 KSI.


  UNLESS OTHERWISE NOTED, ALL STRUCTURAL STEEL PERMANENTLY EXPOSED TO VIEW SHALL
- BE SHOP PAINTED WITH TWO COAT OF RED OXIDE PAINT
- THE STRUCTURAL STEEL ERECTOR SHALL PROVIDE ALL TEMPORARY GUYING AND BRACING (SEE


#### D. NOTES ON MASONRY WALLS

- ALL MATERIALS AND WORKMANSHIP SHALL BE IN ACCORDANCE WITH THE APPLICABLE STANDARDS AND SPECIFICATIONS OF THE NATIONAL CONCRETE MASONRY ASSOCIATION AND UNIFORM BUILDING CODE
- 2. CONCRETE MASONRY UNITS SHALL CONFORM TO ASTM C90 GRADE N.
- MORTAR AND GROUT FOR ALL REINFORCED MASONRY SHALL CONFORM TO ASTM 270-TYPE M AND SHALL HAVE A MINIMUM 28-DAYS STANDARD CYLINDER COMPRESSIVE STRENGTH OF 21 MPa (3000 PSI).
- ALL MASONRY WALLS SHALL BE REINFORCED ACCORDING TO THE FOLLOWING SCHEDULE OF CONCRETE HOLLOW BLOCK REINFORCEMENT UNLESS OTHERWISE INDICATED IN THE PLANS.
- ALL CELLS CONTAINING REINFORCING BARS OR INSERTS SHALL BE SOLIDLY FILLED WITH
- 6 FOR TYPICAL CONNECTION DETAILS ON MASONRY UNITS, REFER TABLE-1 & FIGURES 1,2,3 & 4.

#### TABLE - 1 : SCHEDULE OF CONCRETE HOLLOW BLOCK REINFORCEMENT

| THICKNESS | REINFORC              | EMENT                 | NOTES    |                                                                                                                                       |
|-----------|-----------------------|-----------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------|
| mm        | HORIZONTAL            | VERTICAL              |          |                                                                                                                                       |
| 100       | 10mmØ @<br>600mm O.C. | 10mmØ @<br>600mm O.C. | A.<br>B. | MINIMUM LAP SLICES = 40Ø  PROVIDE 1-12mmØ VERTICAL BAR @ CORNERS, INTERSECTIONS, END OF WALLS, AND EACH SIDE OF OPENING.              |
| 150       | 12mmØ @<br>600mm O.C. | 12mmØ @<br>600mm O.C. | C.       | WHERE CHB WALLS ADJOIN COLUMNS RC BEAMS & WALLS, DOWELS WITH THE SAME SIZE AS VERTICAL OR HORIZONTAL REINFORCEMENT SHALL BE PROVIDED. |
|           |                       |                       | D.       | LINTEL BEAMS SHALL BEAR AT LEAST 16 INCHES (400 mm)<br>ON EACH SIDE OF MASONRY WALL OPENING.                                          |





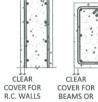
TYPICAL CONNECTION DETAILS OF CONCRETE MASONRY UNITS AT COLUMN AND/OR WALLS

#### E. NOTES ON SLAB-ON-GRADE

(FIGURE 3)

- THE SOIL SUBGRADE AND FILL LAYERS BELOW ALL SLAB ON GRADE, PAVING AND PIT SHALL BE MECHANICALLY COMPACTED IN LAYERS, TO THE MIN. OF 95% OF THE MODIFIED LINIFORM BUILDING CODE
- ALL SLABS-ON-GRADE SHALL BE PROVIDED WITH A MIN. OF 75mm THK. GRAVEL BEDDING OR UNLESS NOTED. 3. UNLESS OTHERWISE NOTED, ALL BEDDED SLABS SHALL BE REINFORCED WITH 12mm
- BARS AT 400mm O.C. EACHWAY AT THE CENTER OF SLAB.
  IN ORDER TO AVOID CONCRETE SHRINKAGE CRACKING, PLACE SLAB IN ALTERNATING
  LANE (OR CHECKBOARD) PATTERN. THE MAX. LENGTH OF SLAB CAST IN ANY ONE CONTINUOUS POUR IS RECOMMENDED TO BE LESS THAN 100 FEET. THE MAX. SPACING
- OF JOINTS SHALL BE 25" (7.8m).

  5. SEE THE ARCHITECTURAL DRAWINGS FOR EXACT LOCATIONS OF DEPRESSED SLAB AREAS AND DRAINS, SLOPE SLAB TO DRAINS WHERE SHOWN.

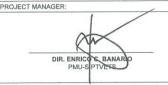

#### F. NOTES ON FOUNDATIONS

- ALL FOUNDATION CONCRETE SHALL OBTAIN A 28 DAYS COMPRESSIVE STRENGTH. ALL CONCRETE TO BE PERMANENTLY EXPOSED TO WEATHER SHALL BE AIR ENTRAINED TO 5% (+ 1%) WITH AN ADMIXTURE THAT CONFORMS TO ASTM C-260.
- ALL REINFORCING STEEL SHALL CONFORM TO ASTM A-615, GRADE 60.
- 3. UNBALANCED BACKFILLING SHALL BE DONE AGAINST FOUNDATION WALLS ARE SECURELY BRACED AGAINST OVERTURNING, EITHER BY TEMPORARY BRACING OR BY PERMANENT CONSTRUCTION.
- UTILITIES. FOUNDATIONS SHALL BE LOWERED WHERE REQUIRED TO AVOID UTILITIES.
- 5. UNLESS OTHERWISE NOTED, THE CENTERLINES OF COLUMN FOUNDATIONS SHALL BE LOCATED ON
- ALL RETAINING WALLS SHALL HAVE AT LEAST 12" OF FREE-DRAINING GRANULAR BACKFILL, AT FULL HEIGHT OF WALL. PROVIDE CONTROL JOINTS IN RETAINING WALLS AT APPROXIMATELY EQUAL INTERVALS NOT TO EXCEED 25 FT. NOR 3 TIMES THE WALL HEIGHT. PROVIDE EXPANSION JOINTS AT EVERY FOURTH CONTROL JOINT, UNLESS OTHERWISE INDICATED.
- 7. ALLOWABLE SOIL BEARING CAPACITY AS PER BY DEVELOPER

## G. CONCRETE PROTECTION COVER FOR REINFORCEMENT

CONCRETE COVER FOR REINFORCEMENT SHALL BE MEASURED FROM THE CONCRETE SURFACE TO THE OUTERMOST SURFACE OF THE STEEL SURFACE OF THE STEEL, i,e TO THE OUTER EDGE OF STIRRUPS, TIES OR SPIRALS ENCLOSING MAIN BAR TO THE OUTERMOST LAYER OF BARS IF MORE THAN ONE LAYER IS USED WITHOUT STIRRUPS OR TIES, THE FF, MIN, CONCRETE COVER SHALL BE PROVIDED FOR REINFORCEMENT.





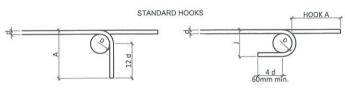

FOR APPROVAL PLANS OF **REGIONAL TVET INNOVATION CENTERS (RTICs) 2023** 



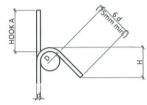
PROPOSED TESDA SFIST INNOVATION CENTER

PROJECT TITLE:






SECRETARY, TESDA


SHEET CONTENTS

S-1

#### H. STANDARD REINFORCEMENT DETAILS



D=6d for d=8 mm, through d=25 mm D=8d for d=28 mm., d=32 mm. & d=36 mm. D=10d for d=42 mm., & d=47 mm

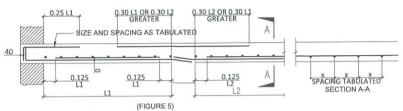


D=6d for d=8 mm, through d=25 mm D=8d for d=28 mm., d=32 mm. & d=36 mm. D=10d for d=42 mm., & d=47 mm.

135° HOOKS D=6d for d=8 mm, through d=25 mm D=8d for d=28 mm., d=32 mm. & d=36 mm D=10d for d=42 mm., & d=47 mm.

#### STANDARD END HOOK DIMENSIONS

| BAR SIZE |        | 180° HOOKS     |     | 90° HOOKS | 135° HOOKS |         |
|----------|--------|----------------|-----|-----------|------------|---------|
| (mm)     | D(mm.) | A (mm.) J (mm. |     | A (mm.)   | A (mm.)    | H (mm.) |
| 8        | 50     | 105            | 65  | 130       |            |         |
| 10       | 60     | 125            | 80  | 155       | 110        | 65      |
| 12       | 80     | 155            | 100 | 200       | 115        | 80      |
| 16       | 95     | 180            | 130 | 250       | 140        | 95      |
| 20       | 120    | 220            | 165 | 325       | 205        | 115     |
| 25       | 155    | 275            | 205 | 425       | 270        | 155     |
| 28       | 240    | 375            | 300 | 475       |            |         |
| 32       | 275    | 425            | 335 | 550       |            |         |


#### BASIC DEVELOPMENT LENGTH, Ldb

|                            |                                                               |                                                | TENS                                                                    | SION                                                                 |                  |                                                                         |                                                                      | COMP              | RESSION               |
|----------------------------|---------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------|------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------|-----------------------|
| BAR DEV'T DEV'T CLASS A CL |                                                               | TOP BAR (MIN. OF 300mm<br>CONCRETE CAST BELOW) |                                                                         |                                                                      | DEVT             | COMPRES-<br>SION SPLICE                                                 |                                                                      |                   |                       |
| (mm)                       | Ld                                                            | LENGTH<br>Ldh                                  | SPLICE                                                                  | SPLICE                                                               | DEV'T.<br>LENGTH | CLASS A<br>SPLICE                                                       | CLASS B<br>SPLICE                                                    | LENGTH            | SION SPEICE           |
| Ø10                        | 350                                                           | 200                                            | 300                                                                     | 375                                                                  | 500              | 375                                                                     | 500                                                                  | 200               | 375                   |
| Ø12                        | 400                                                           | 225                                            | 350                                                                     | 450                                                                  | 575              | 450                                                                     | 575                                                                  | 250               | 450                   |
| Ø16                        | 550                                                           | 300                                            | 475                                                                     | 600                                                                  | 775              | 600                                                                     | 775                                                                  | 300               | 600                   |
| Ø20                        | 675                                                           | 375                                            | 675                                                                     | 900                                                                  | 1200             | 900                                                                     | 1200                                                                 | 400               | 720                   |
| Ø25                        | 1170                                                          | 475                                            | 1170                                                                    | 1375                                                                 | 1375             | 1375                                                                    | 1775                                                                 | 500               | 900                   |
| Ø28                        | 1350                                                          | 525                                            | 1350                                                                    | 1700                                                                 | 1700             | 1700                                                                    | 2225                                                                 | 550               | 1000                  |
| Ø32                        | 1750                                                          | 600                                            | 1750                                                                    | 1950                                                                 | 1950             | 1950                                                                    | 2600                                                                 | 625               | 1150                  |
| SKETCH                     | STAIGHT                                                       | STD 90° OR<br>180° HOOK                        | QMSA                                                                    | CLASS B                                                              | CASSA            | CIASS A                                                                 | CASS B                                                               |                   | COMPRESSION<br>INSIDE |
| REMARKS                    | RAGE FOR BOT.<br>END ANCHO-<br>BARS OF<br>SLABS AND<br>BEAMS. |                                                | WHERE STRESS<br>IN BARS < 0.5/y<br>& BARS SPLICED<br>ARE 50% OR<br>LESS | WHERE STRESS<br>IN BARS<br>> 0.5ly OR/<br>& % OF BAR<br>SPLICE > 50% |                  | WHERE STRESS<br>IN BARS < 0.5fy<br>& BARS SPLICED<br>ARE 50% OR<br>LESS | WHERE STRESS<br>IN BARS<br>< 0.5/y ORV<br>& % OF BAR<br>SPLICE > 50% | HOOKS NOT<br>USED |                       |

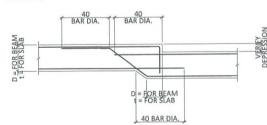
- FOR EPOXY-COATED BAR, THE TENSILE DEVELOPMENT LENGTH AND LAP SPLICE

LENGTH SHOWN IN THE TABLE SHALL BE INCREASED BY 20%

- 1 WELDED WIRE FABRIC MESH SHOULD BE LAPPED OVER ADJACENT SHEETS BY 300 MM
- 2. BARS SHALL BE SPLICED ONLY WHERE INDICATED, EXCEPT THAT BARS INDICATED CONTINUOUS MAY BE SPLICED AT CONTRACTOR CONVENIENCE. WHERE SPLICE LOCATIONS FOR CONTINUOUS BARS, ARE NOTED, THOSE BARS SHALL BE TENSION SPLICED

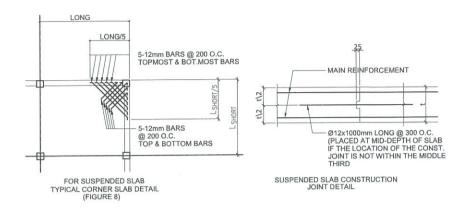


REINFORCEMENT OF ONE-WAY SLABS WITH THREE OR MORE SPANS


3. USE COMPRESS LAP SPLICE FOR COLUMN TO ISOLATED FOOTING JUNCTION NOT CONNECTED WITH GRADE BEAMS, FOR COLUMN TO ISOLATED FOOTING, WALL FOOTINGS, SHEAR JUNCTION CONNECTED WITH GRADE BEAMS, COMBINED FOOTINGS, RETAINING WALL FOOTINGS AND MAT FOUNDATIONS, TENSION LAP SPLICE SHALL BE USED.

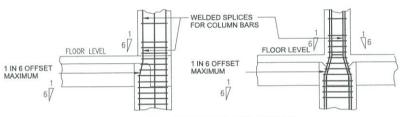
4. ALL REINFORCING STEEL SHALL BE SECURELY HELD IN PROPER POSITION WHILE POURING CONCRETE CHAIRS, TIES, SPACERS, ADDITIONAL BARS AND STIRRUPS SHALL BE PROVIDED BY THE CONTRACTOR TO FURNISH SUPPORT FOR

### I. NOTES ON CONCRETE SLABS


- ALL SLAB REINFORCEMENTS SHALL HAVE A MINIMUM CLEAR DISTANCE OF 20mm FROM THE BOTTOM AND FROM THE TOP OF SLABS.
   UNLESS OTHERWISE DETAILED, FOR CONTINUOUS SLABS WITH THE MAIN
- REINFORCEMENT RUNNING IN ONE DIRECTION, REINFORCING BARS SHALL
- BE UP, EXTENDED OR CUT AS FOLLOWS:

  IF SLABS ARE REINFORCED BOTHWAYS, BARS ALONG THE SHORTER SPAN
  SHALL BE PLACED BELOW THOSE ALONG THE LONG SPAN AT THE CENTER OF THE SLAB AND BE PLACED OVER THE LONGER SPAN BARS ON AREAS NEAR THE SUPPORTS. THE SPACING OF THE BARS AT THE COLUMN STRIPS SHALL BE APPROXIMATELY ONE AND ONE-HALF (1-1/2) TIMES THAT IN THE MIDDLE STRIPS BUT NO CASE GREATER THAN TWO AND ONE-HALF (2-1/2)
- TIMES THE SLAB THICKNESS OR 450mm.
  TEMPERATURE BARS FOR SLABS SHALL BE GENERALLY PLACED NEAR THE FACE IN TENSION AND SHALL NOT BE LESS THAN .0025 BxT.
- UNLESS OTHERWISE NOTED, DROP SLABS SHALL BE PROVIDED WITH ADDITIONAL REINFORCEMENT AT THE LOCATION OF DROP AS SHOWN IN




TYPICAL BEAM/SLAB CHANGE SOFFIT DETAIL (FIGURE 7)

- 6. PROVIDE EXTRA REINFORCEMENT FOR CORNER SLAB (TWO ADJACENT DISCONTINUOUS EDGES) AS SHOWN BELOW AND AT ENDS AND CORNERS OF SHEAR WALL (SEE FIG. 8)
- 7. SEE MECHANICAL, PLUMBING, ELECTRICAL AND FIRE PROTECTION DRAWINGS FOR ALL SUSPENDED AND EMBEDDED PIPING, CONDUITS, DUCTWORKS
- 8. UNLESS OTHERWISE NOTED, EMBEDDED CONDUITS SHALL BE RUN GENERALLY AT MID-BAY AND PARALLEL CONDUITS SHALL BE AT THREE DIAMETERS ON CENTER, CONDUIT SIZE NOT EXCEED 1/4 OF THE SLAB THICKNESS AND SHALL BE LOCATED AT MID THICKNESS OF THE SLAB.



## J. NOTES ON COLUMNS

1. WHERE COLUMNS CHANGE IN SIZE, VERTICAL REINFORCEMENTS SHALL BE OFFSET AT A SLOPE NOT MORE THAN 1 IN 6, PROVIDE TRANSVERSE REINFORCEMENT AS PER ITEM E BELOW FOR JOINTS WITH BAR OFFSETS. (AS SHOWN FIGURE 9)

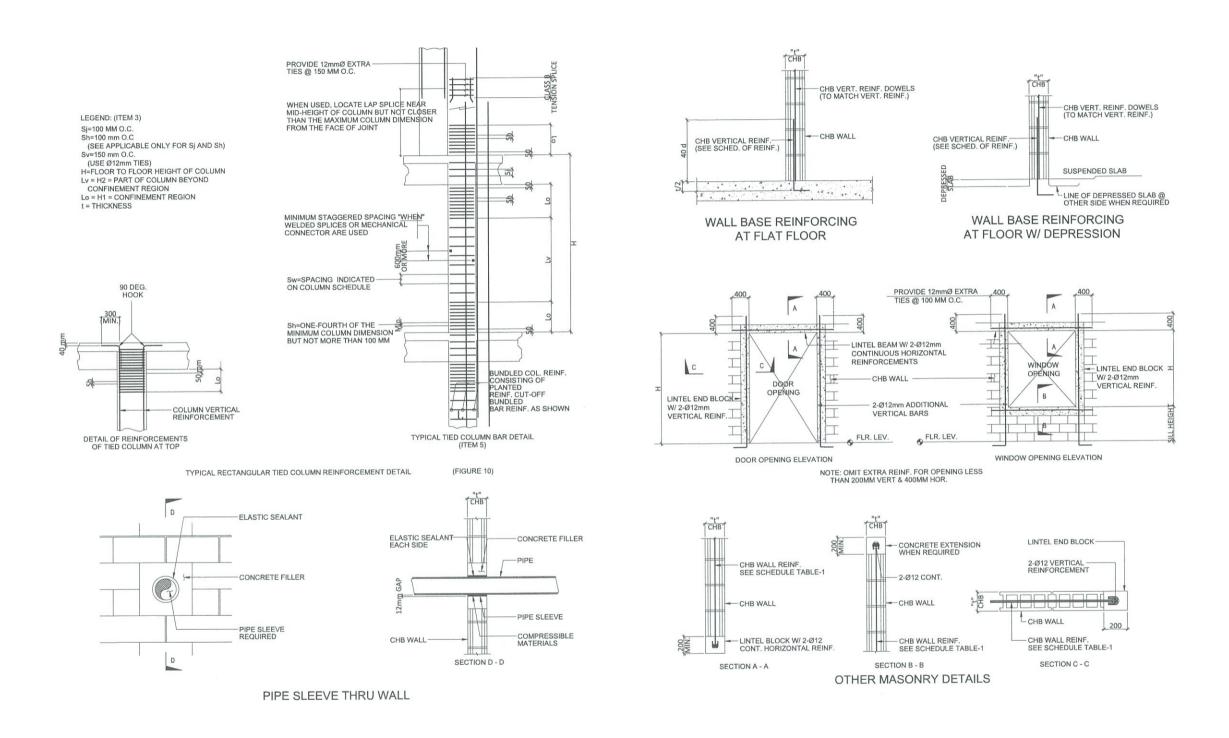


TYPICAL SPLICE & OFFSET DETAIL OF COLUMN BARS (FIGURE 9)

- LAP SPLICES, WHEN REQUIRED, ARE PERMITTED ONLY WITHIN THE CENTER HALF OF THE COLUMN LENGTH AND SHALL BE PROPORTIONED AS TENSION SPLICES. IN NO CASE SHALL THE LAP SPLICE BE LENGTH AND STALL BE PROPORTIONED AS TENSION SPLICES. IN NO GOAD SINCE THE PECE DE LOCATED CLOSER THAN A DISTANCE EQUAL TO THE MAXIMUM COLUMN DIMENSION FROM THE FACE OF THE BEAM-COLUMN JOINT. PROVIDE EXTRA TRANSVERSE REINFORCEMENT OF THE SAME SIZE AND ARRANGEMENT INDICATED IN THE COLUMN SCHEDULE SPACED AT MOST ONE-FOURTH THE MIN. COLUMN SECTION DIMENSION THROUGHOUT THE LENGTH OF THE SPLICE OR 100 mm.
- 3. FOR ALL TIED COLUMNS, PROVIDE TRANSVERSE REINFORCEMENT OF THE SAME SIZE AND ARRANGEMENT INDICATED IN THE COLUMN SECTION SCHEDULE AND SPACED NO GREATER THAN ONE-QUARTER THE THE MINIMUM COLUMN SECTION DIMENSION NOR 100mm, OVER A DISTANCE FROM EACH JOINT FACE OF NOT LESS THAN THE LARGER OF THE MAX. COLUMN SECTION DIMENSION, OR ONE-SIXTH OF THE CLEAR HEIGHT OF THE COLUMN OR 450mm.
- 4. BEAM-COLUMN JOINTS SHALL BE PROVIDED WITH TRANSVERSE REINFORCEMENT SPACED AT TWICE THAT BEAMCOLUMN SIGNED BY ITEM 3 WHEN THERE ARE BEAMS HAVING WIDTHS AT LEAST ONE-HALF THE COLUMN WIDTH AND DEPTHS NOT LESS THAN THREE-QUARTERS OF THE DEEPEST BEAM THAT FRAME DEEPEST BEAM THAT FRAME INTO FOUR SIDES OF THE COLUMN, FOR ALL OTHER CONDITIONS PROVIDE SAME AS

FOR APPROVAL PLANS OF **REGIONAL TVET INNOVATION CENTERS (RTICs) 2023** 




PROPOSED TESDA SFIST INNOVATION CENTER

PROJECT TITLE:



SEC. SUHARTO T. MANGUDADATU, Ph.D. PMU-SIPTVETS SECRETARY, TESDA

SHEET CONTENTS: GENERAL NOTES **S-2** 



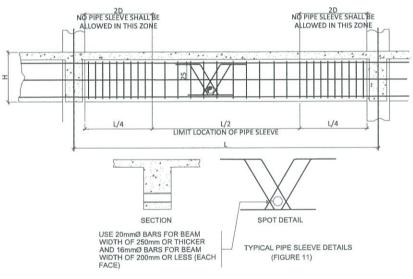
FOR APPROVAL PLANS OF REGIONAL TVET INNOVATION CENTERS (RTICs) 2023



PROPOSED TESDA SFIST INNOVATION CENTER

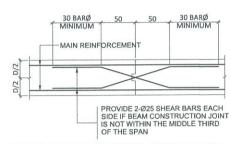


SEC. SUHARTO T. MANGUDADATU, Ph.D.
PMU-SIPTVETS
SECRETARY, TESDA

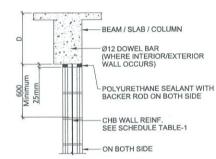

SHEET NO.

GENERAL NOTES

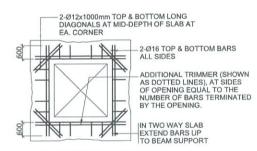
S-3


#### K. NOTES ON BEAMS AND GIRDERS

- 1. UNLESS OTHERWISE NOTED IN PLANS OR SPECIFICATIONS, CAMBER ALL BEAMS AT LEAST 6mm FOR EVERY 4500mm OF SPAN EXCEPT FOR CANTILEVERS FOR WHICH THE CAMBER SHALL BE AS NOTED IN THE PLANS OR AS ORDERED BY THE STRUCTURAL ENGINEERS BUT IN NO CASE LESS THAN 19mm FOR
- 2. IF THERE ARE TWO OR MORE LAYERS OF LONGITUDINAL REINFORCING BARS IN A BEAM OR GIRDER, USE SEPARATORS OF A SIZE NOT LESS THAN 25mm BARS SPACED ABOUT 900mm ON CENTER. IN NO CASE SHALL THERE BE LESS THAN TWO (2) SEPARATORS BETWEEN LAYERS OF BARS.
- 3. LONGITUDINAL REINFORCING BARS SHALL BE PLACED SYMMETRICALLY ABOUT THE VERTICAL CENTER LINE OF THE BEAM OR GIRDER SECTION WHERE POSSIBLE WITH UPPER LAYER BARS PLACED DIRECTLY ABOVE THOSE IN THE BOTTOM LAYER.
- 4 BEAM REINFORCING BARS BOTH TOP AND BOTTOM, TERMINATING IN A WALL, SHALL EXTEND AT THE MOST 50mm FROM THE FAR FACE OF THE WALL AND SHALL TERMINATE IN A STANDARD 90° HOOK.
- 5 LONGITUDINAL REINFORCEMENT OF GIRDERS, BOTH TOP AND BOTTOM, TERMINATED IN A COLUMN SHALL BE EXTENDED TO THE FAR FACE OF THE CONFINED CONCRETE CORE OF THE COLUMN AND TERMINATED BY A STANDARD 90° HOOK.
- 6. GENERALLY, NO LAP SPLICE SHALL BE PERMITTED ON BEAMS AND GIRDERS AT POINT WHERE CRITICAL BENDING STRESSES OCCUR. IN ADDITION, FOR GIRDERS, NO LAP SPLICE SHALL BE LOCATED WITHIN THE JOINTS OR WITHIN A DISTANCE EQUAL TO TWICE THE MEMBER DEPTH FROM THE FACE OF THE JOINT.
- 7 PROVIDE LAP SPLICES IN GIRDERS WITH HOOP REINFORCEMENT OVER THE LENGTH OF THE LAPPED BARS SPACED NO FARTHER THAN ONE-FOURTH THE NOMINAL DEPTH, OR 100
- 8. SEE MECHANICAL, PLUMBING, ELECTRICAL AND FIRE PROTECTION DRAWINGS FOR ALL SUSPENDED AND EMBEDDED PIPING, CONDUITS, DUCTWORKS, EQUIPMENTS, ETC.
- 9. PIPE AND DUCT SLEEVES SHALL BE LOCATED WITHIN THE REGION BOUNDED BY ONE-FOURTH OF CLEAR SPAN LENGTH FROM THE SUPPORTS. (SEE FIGURE 11)




#### NOTES:


- 1. SEEK STRUCT'L ENGINEER'S APPROVAL FOR PIPE SLEEVES W/ DIAMETERS BIGGER THAN THE MAXIMUM STIPULATED.
- 2. PIPE SLEEVES SHALL BE LOCATED WITHIN



#### BEAM CONSTRUCTION JOINT DETAIL



### WALL SUPPORT AT BOTTOM OF BEAM/SLAB/COLUMN



# SLAB OPENING DETAIL

# NOTE:

- PROVIDE THESE ADDITIONAL BARS FOR ALL OPENINGS PLUS BARS (SHOWN AS DOTTED LINES) PARALLEL TO SIDE OF OPENING EQUAL TO THE NUMBER OF INTERRUPTED BARS BY THE OPENING.
- 2. SEE ARCHITECTURAL & MECHANICAL PLANS FOR SLAB OPENING LOCATION.
- 3. OMIT TRIMMER BARS WHERE OPENING IS FRAMED

#### L. DESIGN CRITERIA

#### DESIGN LOADS

| 1. DEAD LOADS                                        |                                          | 2. LIVE LOADS                                         |                                  |
|------------------------------------------------------|------------------------------------------|-------------------------------------------------------|----------------------------------|
| a. CEILING<br>b. CONCRETE                            | 0.10 kPa<br>0.023 kPa/mm                 | a. CORRIDORS ————<br>b. REST ROOMS ————               | 4.80 kPa                         |
| c. FLOOR FINISH d. INTERIOR PARTITIONS— e. UTILITIES | —— 1.53 kPa<br>—— 1.0 kPa<br>—— 0.25 kPa | c. LIGHT STORAGE ———————————————————————————————————— | 6.00 kPa<br>4.80 kPa<br>4.80 kPa |
| 3. SEISMIC LOADS                                     |                                          | f. ROOMS                                              | 2.40 kPa                         |

### 3. SI

SEISMIC PROBABILITY FOR ZONE IV V = ZIW/RT BASED ON 2015 NSCP

#### 4. DESIGN STRESSES a. CONCRETE

1. UNLESS OTHERWISE INDICATED IN PLANS OR NOTED IN THE SPECIFICATIONS THE MINIMUM28-DAYS CYLINDER COMPRESSIVE STRENGTH OF CONCRETE fc, SHALL BE AS

| 1.1 FOR COLUMN/BEAMS      |                                                                                                               |                                         |
|---------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| 1.2 FOR SUSPENDED SLAB    |                                                                                                               | 27.60 Mpa (4,000 psi)                   |
| 1.3 FOR FOOTINGS          |                                                                                                               | 27.60 Mpa (4,000 psi)                   |
| 1.4 FOR WALL FOOTINGS     |                                                                                                               | 27.60 Mpa (4,000 psi)                   |
| 1.5 FOR SLAB-ON-GRADE/FIL | L, PARAPET WALLS,                                                                                             | 27.60 Mpa (4,000 psi)                   |
| GUTTERS AND OTHER STR     | RUCTURAL ELEMENTS                                                                                             |                                         |
| 1.6 fm - MASONRY          |                                                                                                               | 5.18 MPa ( 750 psi)                     |
|                           | 1.2 FOR SUSPENDED SLAB 1.3 FOR FOOTINGS 1.4 FOR WALL FOOTINGS 1.5 FOR SLAB-ON-GRADE/FIL GUTTERS AND OTHER STE | 1.2 FOR SUSPENDED SLAB 1.3 FOR FOOTINGS |

#### b. REINFORCING STEEL BARS

- 1. ALL REINFORCING STEEL BARS SHALL BE NEW BILLET, HOT ROLLED, WELDABLE, DEFORMED BARS CONFORMING TO THE SPECIFICATIONS OF PNS 49: 1986 (ASTM 615) WHOSE GRADE IS SHOWN ON TABLE 2.
- 2. THE SUPPLEMENTARY REQUIREMENTS OF WELDABLE DEFORMED REINFORCING BARS
- SHALL BE AS FOLLOWS:

  2.1 THE MAXIMUM YIELD STRENGTH OF WELDABLE BARS = 540 MPa.

  2.2 THE TENSILE STRENGTH SHALL NOT BE LESS THAN 1.25 TIMES THE ACTUAL YIELD STRENGTH.

#### c STRUCTURAL STEEL

1. UNLESS OTHERWISE NOTED, ALL MATERIALS SHALL BE IN ACCORDANCE WITH THE FOLLOWING ASTM SPECIFICATIONS.

| MEMBER                    | ASTM                 | MIN. STRENGTH |
|---------------------------|----------------------|---------------|
| STRUCTURAL TUBING         | A 500 ( GRADE B)     | 36 KSI        |
| STEEL PIPE                | A 53 (TYPE E, GR. B) | 36 KSI        |
| OTHER ROLED PLATES/SHAPES | A 36                 | 36 KSI        |
| CONNECTION BOLTS          | A 325                | 105 KSI       |
| ANCHOR BOLTS              | A 325                | 105 KSI       |
| THREADED RODS             | A 36                 | 36 KSI        |
| NONSHRINK GROUT           | C 1107               | 8000 PSI      |
|                           |                      |               |

#### STRUCTURAL FLEMENT DESIGNATION

| ALT.   | _      | ALTERNATE              | CS        | _ | COLUMN STRIP        |
|--------|--------|------------------------|-----------|---|---------------------|
| B.W.   | states | BOTH WAYS              | CU. M.    | - | CUBIC METER         |
| 2B-1   | _      | BEAM MARK              | db        | - | BAR DIAMETER        |
| BB/B   | -      | BOTTOM BAR             | DIA. or Ø | _ | DIAMETER            |
| ВМ     | _      | BOTTOM MOST BAR        | E.F.      | - | EACH FACE           |
| C-1    | -      | COLUMN MARK            | E.W.      | - | EACH WAY            |
| CB-1   | -      | CANTILEVER BEAM/CORBEL | E.A       | - | EACH                |
| CHB    | -      | CONCRETE HOLLOW BLOCK  | EQ.       | _ | EQUAL               |
| C.O.C. | -      | CENTER ON CENTER       | ISO. JT.  | - | ISOLATION JOINT     |
| COL.   | _      | COLUMN                 | kN        | _ | KILONEWTON          |
| CONC.  | _      | CONCRETE               | kPA       | - | KILOPASCAL          |
| CONT   | -      | CONTINOUS              | Ksi       | - | KIPS PER SQUARE INC |

FOR APPROVAL PLANS OF **REGIONAL TVET INNOVATION CENTERS (RTICs) 2023** 



PROJECT TITLE:

PROPOSED TESDA SFIST INNOVATION CENTER

CIVIL ENGINEER NRIQUE G. DELA TORRE PROJECT MANAGER

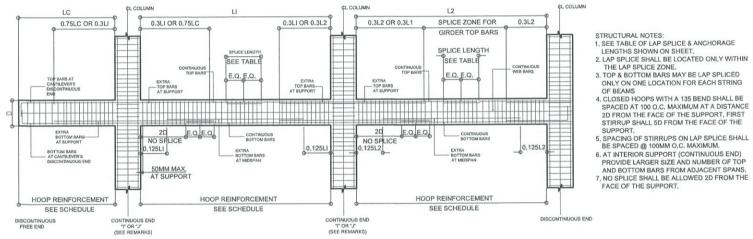
SEC. SUHARTO T. MANGUDADATU, Ph.D.
PMU-SIPTVETS
SECRETARY, TESDA

GENERAL NOTES **S-4** 

SHEET NO.

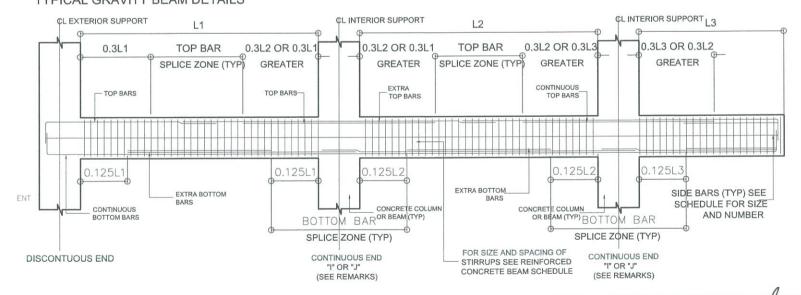
SHEET CONTENTS

#### M. STRIPPING OF FORMS


- 1. FORMS SHALL RESULT IN FINAL STRUCTURE THAT CONFORMS TO SHAPES, LINES AND DIMENSIONS OF THE MEMBERS AS REQUIRED BY THE DESIGN DRAWINGS AND SPECIFICATIONS.
- 2. FORMS SHALL BE REMOVED IN SUCH A MANNER AS NOT TO IMPAIR SAFETY AND SERVICEABILITY OF THE STRUCTURE.

| STRUCTURAL ELEMENT | PERIOD   |
|--------------------|----------|
| 1. BEAM/GIRDER     | 14 DAYS  |
| 2. SUSPENDED SLAB  | 8 DAYS   |
| 3. COLUMN/SHEARWAL | 2 DAYS   |
| 4. RETAINING WALL  | 18 HOURS |
| 5. FOUNDATION      | 24 HOURS |

#### N. REMOVAL OF SHORES AND SHORING


- 1. IT SHALL BE THE CONTRACTOR'S RESPONSIBILITY TO PROVIDE ADEQUATE SHORING AND BRACING OF THE STRUCTURE FOR ALL LOADS THAT MAYBE IMPOSED UNDER CONSTRUCTION.
- 2. STRUCTURAL ELEMENT MUST ATTAINED SUFFICIENT STRENGTH OR DEVELOPED DESIGN PROPERTIES REQUIRED TO SUPPORT ALL LOADS, LIMIT DEFLECTIONS AND CRACKING BEFORE REMOVAL OF
- 3. REMOVAL OF SHORES ARE NOT ALLOWED WITHIN THE GIVEN CURING PERIOD WHEN ADDITIONAL LOADS ARE IMPOSED, UNLESS ANAYSIS INDICATES ADEQUATE STRENGTH TO SUPPORT SUCH
- 4. INSTALLATION OF RESHORES IS NECESSARY FROM ANY PART OF STRUCTURE UNDER CONSTRUCTION.

## TYPICAL GIRDER DETAILS



- ONLY ON ONE LOCATION FOR EACH STRING
- ONLY ON ONE LOCATION FOR EACH STRING
  OF BEAMS
  4. CLOSED HOOPS WITH A 135 BEND SHALL BE
  SPACED AT 100 O.C. MAXIMUM AT A DISTANCE
  2D FROM THE FACE OF THE SUPPORT, FIRST
  STIRRUP SHALL 5D FROM THE FACE OF THE
- 5. SPACING OF STIRRUPS ON LAP SPLICE SHALL BE SPACED @ 100MM O.C. MAXIMUM.

# TYPICAL GRAVITY BEAM DETAILS



ROOF LEVEL FLOOR LEVEL N.G.L. SEE TIE SCHEDULE

NOTES: 1, Y = MAX OF FF.

A. H/6 B. 450mm C. MAX COLUMN DIMENSION 2. SPLICES ARE PERMITTED ONLY WITHIN THE CENTER HALF OF COLUMN HEIGHT (H)

3. STAGGER BAR SPLICES BY 600mm OR MORE 4. PROVIDE TIES @100mm O.C. (MAX.) OVER THE 4. PROVIDE THESE WINDOWN OF THE FULL LAP SPLICE LENGTH
5. SPECIAL TIES @ THE BEAM COL. JOINT TO CONFORM TO THE SAME CONFIGURATION OF TIES

AS INDICATED IN THE SCHEDULE OF COLUMNS 6. NO OF SPLICES BARS AT ONE LEVEL SHALL NOT EXCEED ONE-THIRD (1/3) OF THE TOTAL NO. OF COLUMN VERTICAL BARS

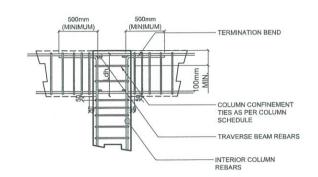
PROJECT DIRECTOR

FOR APPROVAL PLANS OF **REGIONAL TVET INNOVATION CENTERS (RTICs) 2023** 

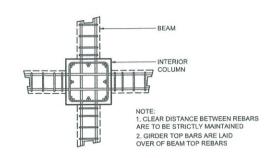


PROPOSED TESDA SFIST INNOVATION CENTER

PROJECT TITLE:

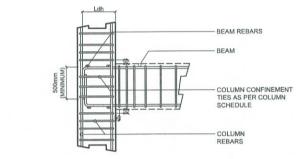

SEC. SUHARTO T. MANGUDADATU, Ph.D.

PMU-SIPTVETS SECRETARY, TESDA

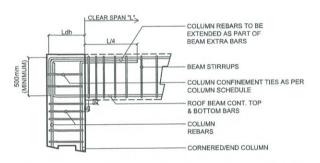

GENERAL NOTES TYPICAL GIRDER DETAILS TYPICAL GRAVITY BEAM DETAILS

SHEET CONTENTS:

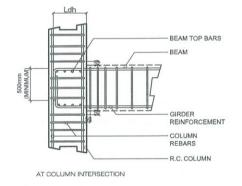
S-5



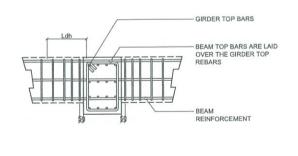



TYPICAL PLAN OF BEAM GIRDER COLUMN JOINT


SCALE: NTS












PROJECT TITLE:



AT GIRDER SPAN

TYPICAL BEAM AND GIRDER REBAR LAY-OUT

SCALE:

NTS

FOR APPROVAL PLANS OF REGIONAL TVET INNOVATION CENTERS (RTICs) 2023



PROPOSED TESDA SFIST INNOVATION CENTER



| JECT MANAGER:          | ,          |
|------------------------|------------|
| 0                      | m          |
| DIR. ENRICO<br>PMU-SIF | C. BANARIO |



SHEET CONTENTS:
INTERIOR COLUMN
TERMINATION BEND
TYPICAL PLAN OF BEAM GIRDER
COLUMN JOINT
BEAM REBAR TERMINATION BEND
TYPICAL BEAM AND GIRDER REBAR
LAY-OUT
CORNER / EXTERIOR TERMINATION
END

S-6